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ABSTRACT 

Richness of soil assumes a vital part in gaining great yield from the harvest. Present day 

headways in innovation are end up being a help in catalyzing the harvest yield. A large 

portion of the ranchers have faith in legends in the public eye and develop without earlier 

information or appropriate examination of manures that are most appropriate for the given 

soil and harvest type. Soil testing, determining the best reasonable compost will expand 

the agrarian creation by improving the supplement content accessible in the dirt. Utilization 

of wrong manures definitely impacts the yield and soundness of the harvest. ML is an up-

and-coming field of informatics that can be applied effectively to the horticultural area, so 

we proposed an ML model which break down the given informational collection with the 

distinctive ML models like Decision Tree, Random Forest, Gradient Boost, Ada Boost, 

Gaussian NB and anticipate the most appropriate fertilizer by choosing the best suitable 

model. ML methods helps in compost prediction consequently, assists the ranchers with 

improving the harvest yield. 
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               CHAPTER -1 

          INTRODUCTION 

 

1.1 PROJECT OUTLINE 

Agribusiness expects a critical part in monetary headway similarly as occupation for 

country like India. India is the second greatest maker of horticulture products. One of the 

major issues looked by the ranchers is picking the correct manure to the particular yield. 

There are numerous expensive composts available in the market, yet they fail to give great 

outcomes since ranchers do not think about their individual requirements which results in 

awful yield. The choice of compost relies upon numerous components consequently it 

cannot be universalized. 

These days there is a great deal of advancement in modern innovation which assists with 

picking a superior compost, one of the arising fields is Machine learning. Machine 

Learning is a part of man-made reasoning (AI) zeroed in on building applications that gain 

from information and improve their precision after some time without being modified to 

do so. It has various calculations with the assistance of which we can make right predictions 

a portion of the algorithms are Random Forest, Decision Tree, Ada Boost, Gradient Boost 

and Gaussian NB. Machine Learning does complex calculations and an assortment of exact 

information to work keenly. It utilizes past information to peruse the examples and 

afterward play out the proposed task as indicated by the characterized rules and calculations 

dependent on the examination it delivered. 

The central point influencing crop yield are the crop type, soil type the supplements like 

N, P, K present in the soil, temperature dampness and mugginess. Without considering 

these in the event that we purchase a manure it wouldn’t give accurate results. This project 

focuses on comparing five different ML models and concludes the accurate model to 

predict the  suitable fertilizer when provided with the macro nutrient (NPK) values obtained 

from soil test along with the temperature, humidity, crop type, soil type by the user. 
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1.2  PROJECT OBJECTIVE 

Fertilizers are chemical substances supplied to the crops to increase their productivity. 

These are used by the farmers daily to increase the crop yield. The fertilizers contain the 

essential nutrients required by the plants, including nitrogen, potassium, and phosphorus. 

They enhance the water retention capacity of the soil and increase its fertility. Fertility of 

soil plays a crucial role in getting good yield from the crop. A fertile soil will contain all 

the major nutrients for basic plant nutrition like Nitrogen(N), Potassium(k), 

Phosphorous(P). This project helps the farmer to predict the suitable fertilizer for the given 

nutrient levels of the soil obtained from the soil test.  Every combination of soil and plant 

are unique, and they require different form of nutrients. So, the type of fertilizer required 

for them also vary. Farmers may not know the exact requirement by the soil or plant until 

they get the result. Hence, farmer in one region may end up with good yield due to the 

right selection of fertilizer while farmer in a different region with same type of soil and 

plant yield improper result. This ensures that the fertilizer being used in the farm is based 

on any unclear predictions. The key is to get this balance right and to maintain a level of 

nutrients in soils that will support our crops. So, there is a need to establish a platform to 

suggest the right fertilizer for a given crop and soil type. 
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               CHAPTER -2 

  METHODOLOGY 

 

An informational collection is gathered which contains the data of temperature, mugginess, 

N, P, K values crop type, soil type and the most appropriate manure for the given 

conditions. further this informational index is checked for any invalid qualities or any 

copies whenever discovered they are taken out. Informational index is then changed over 

into reference diagrams, relationship networks. Charts are plotted against every single 

boundary so the framework can have a superior comprehension of the information. 75% of 

the information is feed to the machine for training it and remaining information is utilized 

to test   it to see whether it’s making the correct prediction, distinctive ML algorithms like 

Random Forest, Decision Tree, Ada Boost Gradient boost and Gaussian NB are utilized to 

do this. when each model does the forecast we ascertain the precision with assistance of 

confusion matrix, F-Score, precision and recall by contrasting these qualities we choose 

the best appropriate model to do the prediction. Once the best suited Model is chosen, the 

system is provided with the macro nutrient (N, P, K) values, temperature, humidity, crop 

type, soil type by the user and gives the best preferred fertilizer for the given conditions. 

Fig 2.1 shows the complete methodology of fertilizer prediction. 

 

                            

                  

 

    

 

                                       

                      

 

 

                       

 

 

 

 

 

 

Fig 2.1: Steps involved in prediction of fertilizers.  

                     Collection of data set 

 

                    Cleaning of data set 

 

                 Visualization of data set 

 

Applying different Machine Learning 

techniques like Decision Tree, Random 

Forest and Gaussian NB 

 

        Selecting the most accurate model 

            Optimizing the model for further 

development. 
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2.1 INTRODUCTION TO MACHINE LEARNING 

Machine learning is a subfield of artificial intelligence (AI). The goal of machine learning 

generally is to understand the structure of data and fit that data into models that can be 

understood and utilized by people. Although machine learning is a field within computer 

science, it differs from traditional computational approaches. In traditional computing, 

algorithms are sets of explicitly programmed instructions used by computers to calculate 

or problem solve. Machine learning algorithms instead allow for computers to train on data 

inputs and use statistical analysis in order to output values that fall within a specific range. 

Because of this, machine learning facilitates computers in building models from sample 

data in order to automate decision-making processes based on data inputs. 

 

Fig 2.2: Machine Learning Pipeline 

In machine learning, tasks are generally classified into broad categories. These categories 

are based on how learning is received or how feedback on the learning is given to the 

system developed. Machine learning implementations are classified into three major 

categories as follows: - 
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2.1.1 Supervised Learning 

In supervised learning, the computer is provided with example inputs that are labelled with 

their desired outputs. The purpose of this method is for the algorithm to be able to “learn” 

by comparing its actual output with the “taught” outputs to find errors and modify the 

model accordingly. Supervised learning therefore uses patterns to predict label values on 

additional unlabelled data. 

2.1.2 Unsupervised Learning 

When an algorithm learns from plain examples without any associated response, leaving 

to the algorithm to determine the data patterns on its own. This type of algorithm tends 

to restructure the data into something else, such as new features that may represent a class 

or a new series of un-correlated values. They are quite useful in providing humans with 

insights into the meaning of data and new useful inputs to supervised machine learning 

algorithms.  

2.1.3 Reinforcement Learning 

When you present the algorithm with examples that lack labels, as in unsupervised 

learning. However, you can accompany an example with positive or negative feedback 

according to the solution the algorithm proposes comes under the category of 

Reinforcement learning, which is connected to applications for which the algorithm must 

make decisions (so the product is prescriptive, not just descriptive, as in unsupervised 

learning), and the decisions bear consequences. In the human world, it is just like learning 

by trial and error. Errors help you learn because they have a penalty added (cost, loss of 

time, regret, pain, and so on), teaching you that a certain course of action is less likely to 

succeed than others. An interesting example of reinforcement learning occurs when 

computers learn to play video games by themselves. In this project we have used different 

supervised algorithms. Fig 2.3 shows the trained supervised model 
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Fig 2.3: A trained model of Supervised Learning 

 

2.2 TECHNOLGIES USED 

2.2.1 Python: 

Python is an interpreted high-level, general-purpose programming language. Python's 

design philosophy emphasizes code readability with its notable use of significant 

indentation. Its language constructs and object-oriented approach aim to help programmers 

write clear, logical codes for small and large-scale projects. 

Python is dynamically typed and garbage-collected. It supports multiple programming 

paradigms, including structured (mainly procedural), object-oriented and functional 

programming. Python is often described as a "batteries included" language due to its 

comprehensive standard library.  

Guido van Rossum began working on Python in the late 1980s as a successor to the ABC 

programming language and first released it in 1991 as Python 0.9.0. Python 2.0 was 

released in 2000 and introduced new features, such as list comprehensions and a garbage 
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collection system using reference counting. Python 3.0 was released in 2008 and was a 

significant revision of the language that is not entirely backwards compatible, and much 

Python 2 code does not run unmodified on Python 3. Python 2 was discontinued version 

2.7.18 in 2020.  

Python is a multi-paradigm programming language. Object-oriented programming and 

structured programming are fully supported, and many of its features support functional 

programming and aspect-oriented programming (including metaprogramming and 

metaobjects (magic methods)). Many other paradigms are supported via extensions, 

including design by contract and logic programming. 

2.2.2 Libraries: 

Python's sizeable standard library, commonly cited as one of its greatest strengths provides 

tools suited to many tasks. For Internet-facing applications, many standard formats and 

protocols such as MIME and HTTP are supported. It includes modules for creating 

graphical user interfaces, connecting to relational databases, generating pseudorandom 

numbers, arithmetic with arbitrary-precision decimals, manipulating regular expressions, 

and unit testing.  

Specifications cover some parts of the standard library (for example, the Web Server 

Gateway Interface (WSGI) implementation follows PEP, but most modules are not. They 

are specified by their code, internal documentation, and test suites. However, because 

mostof the standard library is cross-platform Python code, only a few modules need 

altering or rewriting for variant implementations. 

2.2.3 Pandas 

Pandas is a software library written for the Python programming language for data 

manipulation and analysis. In particular, it offers data structures and operations for 
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manipulating numerical tables and time series. It is free software released under the three 

clause BSD license. The name is derived from the term "panel data", an econometrics term 

for data sets that include observations over multiple periods for the same individuals. Its 

name is a play on the phrase "Python data analysis" itself. Wes McKinney started building 

what would become pandas at AQR Capital while he was a researcher from 2007 to 2010. 

Features: 

• Data Frame object for data manipulation with integrated indexing.  

• Tools for reading and writing data between in-memory data structures and different file 

formats.  

• Data alignment and integrated handling of missing data.  

• Reshaping and pivoting of data sets.  

• Label-based slicing, fancy indexing, and sub setting of large data sets.  

• Data structure column insertion and deletion.  

• Group by engine allowing split-apply-combine operations on data sets. 

 • Data set merging and joining.  

• Hierarchical axis indexing to work with high-dimensional data in a lower-dimensional 

data structure.  

• Time series-functionality: Date range generation and frequency conversion, moving 

window statistics, moving window linear regressions, date shifting and lagging.  

• Provides data filtration. 
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2.2.4 Matplotlib 

Matplotlib is a plotting library for the Python programming language and its numerical 

mathematics extension NumPy. It provides an object-oriented API for embedding plots 

into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. 

A procedural "pylab" interface is also based on a state machine (like OpenGL), designed 

to resemble MATLAB, though its use is discouraged closely. SciPy makes use of 

Matplotlib.  

John D. Hunter originally wrote Matplotlib. Since then, it has an active development 

community and is distributed under a BSD-style license. Michael Droettboom was 

nominated as matplotlib's lead developer shortly before John Hunter's death in August 2012 

and was further joined by Thomas Caswell. Matplotlib 2.0.x supports Python versions 2.7 

through 3.6. Python 3 support started with Matplotlib 1.2. Matplotlib 1.4 is the last version 

to support Python 2.6. Matplotlib has pledged not to support Python 2 past 2020 by signing 

the Python 3 Statement. 

Tools required: 

• Base map: map plotting with various map projections, coastlines, and political boundaries  

• Cartopy: a mapping library featuring object-oriented map projection definitions and 

arbitrary point, line, polygon and image transformation capabilities. (Matplotlib v1.2 and 

above)  

• Excel tools: utilities for exchanging data with Microsoft Excel • GTK tools: interface to 

the GTK library  

• Qt interface  

• Mplot3d: 3-D plots  
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• Nat grid: interface to the nat grid library for gridding irregularly spaced data.   

• matplotlib2tikz: export to Pgfplots for smooth integration into LaTeX documents  

• Seaborn: provides an API on top of Matplotlib that offers sane choices for plot style and 

colour defaults, defines simple high-level functions for common statistical plot types, and 

integrates with the functionality provided by Pandas 

2.2.5 NumPy 

NumPy is a library for the Python programming language, adding support for large, 

multidimensional arrays and matrices, along with an extensive collection of high-level 

mathematical functions to operate on these arrays. NumPy, Numeric, was created by Jim 

Hugunin with contributions from several other developers. In 2005, Travis Oliphant 

created NumPy by incorporating features of the competing Num array into Numeric, with 

extensive modifications. NumPy is open-source software and has many contributors. 

Features: 

•NumPy targets the C Python reference implementation of Python, which is a non 

optimizing bytecode interpreter. Mathematical algorithms are written for this version of 

Python often run much slower than compiled equivalents.  

• NumPy addresses the slowness problem partly by providing multi-dimensional arrays and 

functions and operators that operate efficiently on arrays, requiring rewriting some code, 

primarily inner loops, using NumPy.  

• Using NumPy in Python gives functionality comparable to MATLAB since they are both 

interpreted, and they both allow the user to write fast programs as long as most operations 

work on arrays or matrices instead of scalars. In comparison, MATLAB boasts many 



11 
 

additional toolboxes, notably Simulink, whereas NumPy is intrinsically integrated with 

Python, a more modern and complete programming language.  

• Moreover, complementary Python packages are available; SciPy is a library that adds 

MATLAB-like functionality, and Matplotlib is a plotting package that provides MATLAB 

like plotting functionality. Internally, both MATLAB and NumPy rely on BLAS and 

LAPACK for efficient linear algebra computations.  

• Python bindings of the widely used computer vision library OpenCV utilize NumPy 

arrays to store and operate on data. Since images with multiple channels are simply 

represented as three-dimensional arrays, indexing, slicing or masking with other arrays are 

very efficient ways to access specific pixels of an image. 

 • The NumPy array as a universal data structure in OpenCV for images, extracted feature 

points, filter kernels and many more vastly simplifies the programming workflow and 

debugging. 

2.2.6 Scikit-learn 

Scikit-learn (formerly scikits.learn and sklearn) is a free software machine learning library 

for the Python programming language.  

It features various classification, regression and clustering algorithms, including support 

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is 

designed to interoperate with the Python numerical and scientific libraries NumPy and 

SciPy.  

Scikit-learn is written mainly in Python and uses NumPy extensively for high-performance 

linear algebra and array operations. Furthermore, some core algorithms are written in 

Cython to improve performance.  
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A Cython wrapper around LIBSVM implements support vector machines, logistic 

regression and linear support vector machines by a similar wrapper around LIBLINEAR. 

In such cases, extending these methods with Python may not be possible.  

Scikit-learn integrates well with many other Python libraries, such as Matplotlib and Plotly 

for plotting, NumPy for array vectorization, Pandas data frames, SciPy, and many more. 

2.2.7 Seaborn 

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level 

interface for drawing attractive and informative statistical graphics.  

Seaborn helps to explore and understand the data. Its plotting functions operate on 

dataframes and arrays containing whole datasets and internally perform the necessary 

semantic mapping and statistical aggregation to produce informative plots.  

Its dataset-oriented, declarative API lets you focus on what the different elements of the 

plots mean rather than on the details of how to draw them.  

There is no universally best way to visualize data. Different plots best answer different 

questions. Seaborn makes it easy to switch between different visual representations by 

using a consistent dataset-oriented API.  

When statistical values are estimated, seaborn uses bootstrapping to compute confidence 

intervals and draw error bars representing the estimate's uncertainty.  

Statistical analyses require knowledge about the distribution of variables in your dataset. 

The seaborn function displot() supports several approaches to visualizing distributions. 

These include classic techniques like histograms and computationally-intensive 

approaches like kernel density estimation. 
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Some seaborn functions combine multiple kinds of plots to give informative summaries of 

a dataset quickly. One, jointplot(), focuses on a single relationship. It plots the joint 

distribution between two variables along with each variable's marginal distribution 

 

Fig 2.4: Seaborn plots 
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2.2.8 Jupyter Notebook IDE 

Jupyter Notebook (formerly IPython Notebooks) is a web-based interactive computational 

environment for creating Jupyter notebook documents. The "notebook" term can 

colloquially refer to many different entities, mainly the Jupyter web application, Jupyter 

Python web server, or Jupyter document format, depending on context. A Jupyter 

Notebook document is a JSON document, following a versioned schema, containing an 

ordered list of input/output cells containing code, text (using Markdown), mathematics, 

plots and rich media, usually ending with the ". ipynb" extension.  A Jupyter Notebook can 

be converted to several open standard output formats (HTML, presentation slides, LaTeX, 

PDF, ReStructuredText, Markdown, Python) through "Download As" in the web interface 

via the nbconvert library or "jupyter nbconvert" command-line interface in a shell. To 

simplify the visualization of Jupyter notebook documents on the web, the nbconvert library 

is provided as a service through NbViewer which can take a URL to any publicly available 

notebook document and convert it to HTML on the fly display it to the user. 

 

Fig 2.5: Jupyter IDE 
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Jupyter Notebook provides a browser-based REPL built upon many popular open-source 

libraries:  

• IPython  

• ØMQ (ZeroMQ)  

• Tornado (web server)  

• jQuery  

• Bootstrap (front-end framework)  

• MathJax 

Jupyter Notebook can connect to many kernels to allow programming in different 

languages. By default, Jupyter Notebook ships with the IPython kernel. The 2.3 release 

(October 2014) was 49 Jupyter-compatible kernels for many programming languages, 

including Python, R, Julia, and Haskell.  

The Notebook interface was added to IPython in the 0.12 release (December 2011), 

renamed to Jupyter notebook in 2015 (IPython 4.0 – Jupyter 1.0). Jupyter Notebook is 

similar to the notebook interface of other programs such as Maple, Mathematica, and 

SageMath, a computational interface style that originated with Mathematica in the 1980s. 

According to The Atlantic, Jupyter interest overtook the popularity of the Mathematica 

notebook interface in early 2018. 

2.2.9 Jupyter kernels 

A Jupyter kernel is responsible for handling various requests (code execution, code 

completions, inspection) and reply. Kernels talk to the other components of Jupyter using 

ZeroMQ and thus can be on the same or remote machines. Unlike many other Notebook-
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like interfaces, in Jupyter, kernels are not aware that they are attached to a specific 

document and can be connected to many clients at once. Usually, kernels allow only a 

single language, but there are a couple of exceptions.  

The Jupyter Notebook has become a popular user interface for cloud computing, and major 

cloud providers have adopted the Jupyter Notebook or derivative tools as a front-end 

interface for cloud users. Examples include Amazon's SageMaker Notebooks, Google's 

Colaboratory and Microsoft's Azure Notebook. 

2.3 ALGORITHMS USED 

We have used four different Machine Learning algorithms in this study to compare and 

contrast their performances, the algorithms are as follows: 

2.3.1 Decision Tree (DT): 

Decision Tree makes use of a model, were in a structure that resembles a tree used to make 

decisions and their likely outcomes, as well as chance event outcomes, resource costs, and 

utility. Each node in the tree is a representation of a conditional statement(‘if’) and on the 

whole, the decision tree can be viewed as a representation of a nested conditional. 

A mandatory node that is present for all tree is root node. Root node definitely have leaf 

nodes which return the decision based on the attribute or parameter on each node. For each 

level on the tree two parameters are determined: Information Gain and Entropy. 

Entropy: is nothing but quantitative measure randomness or uncertainty. If entropy is 0, 

the data has no randomness. Zero value of entropy depicts the decision to be certain and 

on the contrary higher values of entropy describes higher levels of uncertainty.  
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Information Gain: It is the change that occurs with entropy after deciding a particular 

attribute with respect to the independent variables. 

 

Where, p(x)=is the probability of the attribute 

These parameters are again calculated after a decision is returned by a leaf node and the 

attribute with the highest IG is removed from the list. This process keeps on repeating 

resulting in the depletion of attributes and finally classification of the datasets. 

 

Fig 2.6: Decision Tree 

 

Steps in DT classification are: 

1.Importing libraries (for DT) and input dataset in python. 

 

2.The class variable split and the validation split is done to obtain the test and train 

dataset. 
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3.The decision tree optimization is done by specifying the criterion for the attribute 

selection 

4. The evaluation parameters are obtained to compare with the other classifiers 

5. Then the model is compiled and fit to give the prediction of faults in the dataset 

2.3.2 Random Forest (RF) 

Random forest is an ensemble learning (process by which multiple several classifiers 

are created and combined to solve a problem) method that is applicable for 

classification as well as regression by combining an aggregate of decision trees at 

training time and the output of this algorithm is based on the output (can be either mode 

or mean/average) of the individual trees that constitute the forest. 

The design of RF is such that group of diverse (to an extent) models operate together to 

solve a problem. This mathematically can be represented with correlation (low 

correlation in this case). This method is proven to be a better option for several problem 

throughout time because each tree try to make up for the mistakes made by any other. 

DT are very specific on the data that they are trained on, even small changes made to the 

set can disturb the structure of the tree 

Each tree in RF get data such that each tree is not very similar to any other tree such that 

making the behaviour of trees diverse. This is achieved by two methods: 

Bagging: random sampling from a dataset and this is done without any replacement 

(this is repeated for each individual trees). It is important to note that this method does 

not take any unique subset of the dataset and training each DTs on them. Replacement 

plays an important role in making sure that DTs make up for each other’s mistakes. 

 

Feature Randomness: Splitting in DTs occur such that there is most separation 

between the left and right nodes after considering every feature present in the dataset. 

But in the case of RF, as there are only limited features in each tree the splitting occurs 
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with very different separation in individual trees and it is very unlikely that two trees 

will be exactly the same. 

 

Fig 2.7: Random forest classifier 

 

2.3.3 Gaussian Naive Bayes 

 
Gaussian Naive Bayes is a variant of Naive Bayes that follows Gaussian normal 

distribution and supports continuous data. We have explored the idea behind Gaussian 

Naive Bayes along with an example. Before going into it, we shall go through a brief 

overview of Naive Bayes.  

 

Naive Bayes are a group of supervised machine learning classification algorithms based on 

the Bayes theorem. It is a simple classification technique, but has high functionality. They 

find use when the dimensionality of the inputs is high. Complex classification problems 

can also be implemented by using Naive Bayes Classifier. 
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2.3.3.1 Bayes Theorem 

Bayes Theorem can be used to calculate conditional probability. Being a powerful tool in 

the study of probability, it is also applied in Machine Learning. 

 

 

                                 Fig 2.8: Formula for bayes theorem 

 

Bayes Theorem has widespread usage in variety of domains. 

2.3.3.2 Naive Bayes Classifier 

Naive Bayes Classifiers are based on the Bayes Theorem. One assumption taken is the 

strong independence assumptions between the features. These classifiers assume that the 

value of a particular feature is independent of the value of any other feature. In a supervised 

learning situation, Naive Bayes Classifiers are trained very efficiently. Naive Bayed 

classifiers need a small training data to estimate the parameters needed for classification. 

Naive Bayes Classifiers have simple design and implementation and they can applied to 

many real life situations. 
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2.3.3.3 Gaussian Naive Bayes 

When working with continuous data, an assumption often taken is that the continuous 

values associated with each class are distributed according to a normal (or Gaussian) 

distribution. The likelihood of the features is assumed to be- 

 

Sometimes assume variance is independent of Y (i.e., σi), or independent of Xi (i.e., σk) 

or both (i.e., σ) 

Gaussian Naive Bayes supports continuous valued features and models each as conforming 

to a Gaussian (normal) distribution. 

An approach to create a simple model is to assume that the data is described by a Gaussian 

distribution with no co-variance (independent dimensions) between dimensions. This 

model can be fit by simply finding the mean and standard deviation of the points within 

each label, which is all what is needed to define such a distribution. 

 



22 
 

 

Fig 2.9: Gaussian NB classifier 

 

The above illustration indicates how a Gaussian Naive Bayes (GNB) classifier works. At 

every data point, the z-score distance between that point and each class-mean is calculated, 

namely the distance from the class mean divided by the standard deviation of that class. 

 

Thus, we see that the Gaussian Naive Bayes has a slightly different approach and can be 

used efficiently. 

2.3.4 Boosting 

Ensemble meta-algorithm that is mainly used to reduce bias (group of presumptions 

made so the target function is relatively easier to learn) and variance (relative change 

in the estimated target function when the training data is changed). 
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2.3.4.1 Ada Boost (AB) 

 
It is ML boosting algorithm, which aggregates several “weak classifiers” (nothing but 

classifiers with performance just slightly better than the random chance) to form a 

“strong classifier. In the case of AdaBoost the weak learners are also known as decision 

stumps. The decision stumps are characterized as weak learners because they are trees 

with only a single split. This algorithm mainly focuses on the difficult classification 

instances rather than the ones that are clearly classified. The process starts with each 

observation having equal weight by training a DT.After the evaluation of the first DT, 

the modified such that the observations that are difficult to classify are assigned with 

higher weights and vice versa. A new tree is now created and works with this highly 

weighted data. This process continues based on the input parameters. These weak 

learners are put together to form a new strong learner as mentioned above. 

 

 

Fig 2.10: Steps in AdaBoost classifier 
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2.3.4.2 Gradient Boost (GB) 

 
Training of models is done in a subsequent and additive method. So, the intuition behind 

gradient boosting algorithm is to repetitively leverage the patterns in residuals and 

strengthen a model with weak predictions and make it better. The main difference 

between AB and GB is the way both these algorithms identify the faults of the weak 

learners. The three causes of discrepancy between original and predicted values are 

noise, variance, and bias. As noise cannot be reduced only the other two are reduced by 

the use of ensemble methods While the AB uses weighted data points, GB uses gradients 

in the loss function (LF). LF is used as a measure of how well our model matches the 

training data that we are given. A main advantage of GB is that it allows the user to choose 

the cost function and optimizes that cost function. 

 

 

Fig 2.11: Steps in Gradient Boost classifier 

 

 

 

 

 



25 
 

      CHAPTER-3 
 

DATA VISUALIZATION 
 

3.1 CLEANING OF DATA SET 

 
This is an essential step to perform before creating a visualization. Clean, consistent data 

will be much easier to visualize. Clean data is data that is free of errors or anomalies which 

may make it hard to use or analyze the data. Starting from a clean dataset allows you to 

focus on creating an effective visualization rather than trying to diagnose and and fix issues 

while creating visualizations. Data cleaning tasks will be very dependent on the dataset that 

you’re working with. In most cases, data cleaning involves: 

1.Removing unnecessary variables 

2.Deleting duplicate rows/observations 

3.Addressing outliers or invalid data 

4.Dealing with missing values 

5.Standardizing or categorizing values 

6.Correcting typographical errors 

 

                                     

 

 

 

 

 

                               Fig 3.1: Steps Involved in Data Cleaning 
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The following observations have been made during the process of data cleaning before 

visualizing the data 

  

Fig 3.2:  Observations of Null Values and Unique Values of parameters 

 
Figure 3.2 shows the number of null values and also the number of unique values of 

parameters that are available in the existing data set. 
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   Fig 3.3 : Types of Crops in that are conisdered. 

 

Figure 3.3 shows the different types of crops that have been considered for the project 

and the count of each crop of in the dataset 

 

Fig 3.4: Different fertilizers used. 

 

Figure 3.4 shows the different types of fertilizers that have been considered for the project 

and the count of each fertilizer of in the data set. 
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3.2 WHAT IS DATA VISUALIZATION? 
 

With the help of data visualization, we can see how the data looks like and what kind of 

correlation is held by the attributes of data. It is the fastest way to see if the features 

correspond to the output. With the help of following Python recipes, we can understand 

ML data with statistics. 

 
                                   Fig 3.5: Types of Data Visualization Techniques 

 

3.2.1 Why Visualization? 

 

Do you think giving you the data of let’s say 1 million points in a table/Database file and 

asking you to provide your inferences by just seeing the data on that table is feasible? Unless 

you’re a super human its not possible. This is when we make use of Data visualization, 

wherein all the data will be transformed into some form of plots and analyzed further from 

that. As being a human, we are more used to grasp a lot of info from diagrammatic 

representation than the counterparts. Okay ! So since it is said that we need to convert the 

data from a boring table into interesting pictorial form like a scatter plot or Bar chart, You 

may wonder, How can I do it? Do I need to write my own code for that ? NO! Actually we 

can make use of very good packages from some popular programming languages which are 

readily available and can make the work pretty much simple with just a single line of code. 

That’s the power of modern programming . As a human, we can just visualize anything in 
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either in 2-d or 3-d. But trust me almost of the data that you obtain in real world won’t be 

this way. As a Machine learning engineer, working with more than 1000-dimensional data 

is very common. So, what can we do in such cases where data is more than 3D? There are 

some Dimensionality Reduction (DR) techniques like PCA, TSNE, LDA etc which helps 

you to convert data from a higher dimension to a 2D or 3D data in order to visualize 

them. There may be some loss of information with each DR techniques, but only they can 

help us visualize very high dimensional data on a 2d plot. TSNE is one of the state-of-the-

art DR techniques employed for visualization of high dimensional data. 

From perspective of building models, by visualizing the data we can find the hidden 

patterns, explore if there are any clusters within data and we can find if they are linearly 

separable/too much overlapped etc. From this initial analysis we can easily rule out the 

models that won’t be suitable for such a data and we will implement only the models that 

are suitable, without wasting our valuable time and the computational resources. This part 

of data visualization is a predominant one in initial Exploratory Data Analysis (EDA) on 

the field of Data science/ML. 

The following techniques have been used to visualize the data from the collected data set 

that consists of N, P, K values, temperature, humidity, moisture, crop type, soil type and 

fertilizer name corresponding to the respective data. 

a. Histograms  

b. Correlation Matrix   

c. Bar Plots     

 

a. Histogram 

Histograms group the data in bins and is the fastest way to get idea about the distribution 

of each attribute in dataset. The following are some of the characteristics of histograms − 
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 It provides us a count of the number of observations in each bin created for 

visualization. 

 From the shape of the bin, we can easily observe the distribution i.e. weather it is 

Gaussian, skewed or exponential. 

 Histograms also help us to see possible outliers. 

The following observations have been made while plotting the histograms of different input 

parameters like temperature, moisture, humidity and the macro nutrient values present in 

the soil like nitrogen(N), phosphorous(P), potassium(k) (these nutrient values can be 

obtained by testing of the soil) excluding the crop type, soil type, and fertilizer names as 

they have not been labelled with values. So, labelling has been done for those parameters 

to procced further. Different histograms have been plotted so as to get a clear understanding 

for the machine to read the data like the number of values of an input parameter that are 

present at a particular instant. 

These are some of the histograms that have been plotted i.e., humidity, moisture, 

temperature, nitrogen, potassium and phosphorus. 

 

   

 

 

 

 

 

 

 

        Fig3.6: Histogram of humidity  
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Figure 3.6 shows the values of humidity that are in between 15-55 with a highest frequency 

of 55,   55-60 occurred with a highest  freaquency of 68, 60-65 occurred with a highest 

frequency of 60, 65-70 occurred with highest frequency of 29, 70-74 occurred with highest  

frequency of 5.  

 

 

 

 

 

 

 

 

 

 

Fig 3.7: Histogram of Moisture 

 

Figure 3.7 shows the values of moisture that are in between 0-30 with a highest frequency 

of 24,   30-40 occurred with a highest  freaquency of 58, 40-50 occurred with a highest 

frequency of 52, 50-60 occurred with highest frequency of 25, 60-65 occurred with highest  

frequency of 35. 
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Fig 3.8: Histogram of nitrogen 

Figure 3.2.1(c)  shows the values of nitrogen that are in between 0-5 with a highest 

frequency of 15, 5-10 occurred with a highest  freaquency of 65, 10-15 occurred with a 

highest frequency of 115, 15-20 occurred with highest frequency of 20, 20-25 occurred 

with highest  frequency of 43, 25-30 occurred with a highest frequency of 5, 30-35 

occurred with a highest frequency of 40, 35-43 occurred with a highest frequency of 42 

 

 

 

 

 

 

 

 

 

 

 

                                    

                                Fig 3.9: Histogram of Phosphorous 
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Figure 3.9  shows the values of phosphorous that are in between 0-10 with a highest 

frequency of 85, 10-20 occurred with a highest  freaquency of 43, 20-30 occurred with a 

highest frequency of 38, 30-40 occurred with highest frequency of 35, 40-45 occurred with 

highest  frequency of 35. 

 

 

      

 

      

 

 

 

 

Fig 3.10: Histogram of potassium 

Figure 3.10 shows the values of potassium that are in between 0.0-2.5 with a highest 

frequency of 255, 2.5-5.0 occurred with a highest  freaquency of 0, 5.0-7.5 occurred with 

a highest frequency of 10, 7.5-10.0 occurred with highest frequency of 17, 10-12.5 

occurred with highest  frequency of 15.12.5-15.0 occurred with highest frequency of 7, 

15.0-17.5 occurred with highest frequency of  10, 17.5-20.0 occurred with highest 

frequency of 11. 

  

b. Correlation Matrix 

Correlation coefficients are indicators of the strength of the linear relationship between 

two different variables, x and y.  A linear correlation coefficient that is greater than zero 

indicates a positive relationship. A value that is less than zero signifies a negative 

relationship. The correlation coefficient (ρ) is a measure that determines the degree to 

which the movement of two different variables is associated. The most common 
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correlation coefficient, generated by the Pearson product-moment correlation, is used to 

measure the linear relationship between two variables. However, in a non-linear 

relationship, this correlation coefficient may not always be a suitable measure of 

dependence. 

The possible range of values for the correlation coefficient is -1.0 to 1.0. In other words, 

the values cannot exceed 1.0 or be less than -1.0. A correlation of -1.0 indicates a 

perfect negative correlation, and a correlation of 1.0 indicates a perfect positive 

correlation. If the correlation coefficient is greater than zero, it is a positive relationship. 

Conversely, if the value is less than zero, it is a negative relationship. A value of zero 

indicates that there is no relationship between the two variables. 

Note: When interpreting correlation, it's important to remember that just because two 

variables are correlated, it does not mean that one causes the other 

Following Correlation Matrix has been obtained for the given input parameters showing 

how they are related to each other. 

https://www.investopedia.com/terms/l/linearrelationship.asp
https://www.investopedia.com/terms/n/negative-correlation.asp
https://www.investopedia.com/terms/p/positive-correlation.asp
https://www.investopedia.com/terms/p/positive-correlation.asp
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Fig 3.11: Correlation Matrix 

The results that are inferred from the above Correlation Matrix are tabulated below 

Table 3.1: Observations made from Correlation Matrix 

 

 Temperature Humidity Moisture Nitrogen Potassium Phosphorous 

Temperature 1.000000 0.094126 -0.029274 -0.025380 -0.029641 0.094987 

Humidity 0.094126 1.000000 0.092427 0.009129 -0.031292 0.147147 

Moisture -0.029274 0.092427 1.000000 -0.90268 0.057861 0.001713 

Nitrogen -0.025380 0.009129 -0.090268 1.000000 -0.48831 -0.629624 

Potassium -0.029641 -0.031292 0.057861 -0.488831 1.000000 0.081873 

Phosphorous 0.094987 0.147147 0.001713 -0.629624 0.081874 1.0000000 
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 Correlation coefficients are used to measure the strength of the linear relationship 

between two variables. 

 A correlation coefficient greater than zero indicates a positive relationship while a 

value less than zero signifies a negative relationship 

 A value of zero indicates no relationship between the two variables being 

compared. 

 A negative correlation, or inverse correlation, is a key concept in the creation of 

diversified portfolios that can better withstand portfolio volatility. 

 Calculating the correlation coefficient is time-consuming, so data are often plugged 

into a calculator, computer, or statistics program to find the coefficient. 

 

c. Bar Plots 

A bar plot shows categorical data as rectangular bars with the height of bars 

proportional to the value they represent. It is often used to compare between values of 

different categories in the data. 

The following Bar Plots have been obtained. 

 

 

 

 

 

 

 

      Fig 3.12: Temperature vs Fertilizer 
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  Fig 3.13: Moisture vs Fertilizer 

 

  

 

Fig 3.14: Nitrogen vs Fertilizer 

 

 

 

 

                                                  Fig 3.15: Potassium vs Fertilizer 
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CHAPTER-4 

   RESULTS AND DISCUSSION 

 

4.1 EVALUATION PARAMETERS 

 

4.1.1 Confusion Matrix: In every algorithm, a set of test data will be kept 

aside for comparison by the Cross Validation method and the comparison 

of the performance of the classifier on this test dataset with the true labelled 

values is visualized as confusion matrix. 

 

A Confusion matrix looks like: 
 

Table 4.1: Confusion Matrix Representation 
 
 

 
Confusion Matrix 

Predicted 

Yes No 

 
Actual 

Yes TP FN 

No FP TN 

 

Where, 

TP = Nets that actually trojan nets and are predicted as 

trojan nets. FN = Nets that are actually trojan nets but 

predicted as normal nets. 

FP = Nets that are actually normal nets but are predicted as 

trojan nets. TN = Nets that are actually normal nets and are 

predicted as normal nets. 
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4.1.2 Accuracy: Accuracy is defined as the fraction of the predictions that 

the classifier got right 

 
                                                             

                                                         

 

4.1.3 Precision: Precision is defined as how often the classifier predicts the output 

correctly, irrespective of it being yes or no 

 

                                            

 
   

4.1.4 Recall: Recall is defined as the number of actual positives our model labels as 

positive 

 

 

4.1.5 F1Score: F1 score is a function of Precision and Recall. It provides a balance 

between precision and recall as it is the weighted average of the two 

 

 

 
 

 

 

 
 
           

Confusion Matrices of all the proposed Machine Learning algorithms have been obtained i.e., for 

Decision Tree, Random Forest, Gaussian NB, Ada Boost, Gradient Boost through which we can infer 

that evaluation parameters like accuracy, recall, precision and f-score.    
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                                                 Fig 4.1: Confusion Matrix for Gaussian NB 

 

    Fig 4.2: Confusion Matrix for Decision Tree 
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                                          Fig 4.3: Confusion Matrix for Random Forest

     

                                            Fig 4.4: Confusion Matrix for Gradient Boost 
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               Fig 4.5: Confusion Matrix for Ada Boost 
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4.2 GRADIENT BOOST CLASSIFIER 

 

     Fig 4.6: Gradient Boost Classifier 

Table 4.2: Results of Gradient Boost Classifier 

   Precision   Recall F1-score 

0 0.75 0.69 0.72 

1 0.40 0.22 0.29 

2 0.90 0.92 0.91 

3 0.95 0.73 0.79 

4 1.00 0.97 0.98 

5 0.98 0.93 0.95 

6 1.00 0.82 0.90 

7 0.75 0.98 0.85 

Accuracy     0.88 

Macro average     0.83 0.78 0.80 

Weighted average 0.88 0.88 0.87 
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4.3 DECISION TREE 

 

Fig4.7: Decision Tree Classifier 

      

     Table 4.3: Results of Decision Tree Classifier 

   Precision   Recall F1-score 

0 0.80 0.62 0.70 

1 057 0.44 0.50 

2 0.90 0.92 0.91 

3 0.88 0.93 0.90 

4 1.00 1.00 1.00 

5 0.98 0.93 0.95 

6 0.95 1.00 0.97 

7 0.95 1.98 0.97 

Accuracy     0.93 

Macro average     0.88 0.85 0.86 

Weighted average 0.93 0.93 0.93 
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4.4 RANDOM FOREST: 

 

Fig 4.8: Random Forest Classifier 

 

      Table 4.4: Results of Random Forest Classifier 
 

   Precision   Recall F1-score 

0 0.82 0.69 0.75 

1 0.00 0.00 0.00 

2 0.88 0.92 0.90 

3 0.79 1.00 0.88 

4 0.92 1.00 0.96 

5 1.00 0.91 0.95 

6 1.00 1.00 1.00 

7 0.94 1.00 0.97 

Accuracy     0.93 

Macro average     0.79 0.82 0.80 

Weighted average 0.90 0.93 0.91 
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4.5 GAUSSIAN NB 

 

 

Fig 4.9: Gaussian NB Classifier 

 

        Table 4.5: Results of Gaussian NB Classifier 

 

   Precision   Recall F1-score 

0 0.62 0.77 0.69 

1 0.40 0.22 0.29 

2 1.00 0.92 0.96 

3 0.94 1.00 0.97 

4 1.00 1.00 1.00 

5 0.98 0.93 0.95 

6 0.95 1.00 0.97 

7 0.95 0.98 0.97 

Accuracy     0.94 

Macro average     0.85 0.85 0.85 

Weighted average 0.93 0.94 0.93 
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4.6 ADA BOOST 

   

Fig 4.10: Ada Boost Classifier 

                     Table 4.6: Results of Ada Boost Classifier 

 

   Precision   Recall F1-score 

0 0.82 0.69 0.75 

1 0.00 0.00 0.00 

2 0.88 0.92 0.90 

3 0.79 1.00 0.88 

4 0.92 1.00 0.96 

5 1.00 0.91 0.95 

6 1.00 1.00 1.00 

7 0.94 1.00 0.97 

Accuracy     0.93 

Macro average     0.79 0.82 0.80 

Weighted average 0.90 0.93 0.91 
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4.7 COMPARISION TABLE  

Table 4.7: Comparison Table for all proposed algorithms 

  Decision Tree Gaussian NB Random Forest Ada Boost Gradient Boost 

Accuracy 93.33 93.68 92.5 55 87.7 

Precision 93 93 90 90 88 

Recall 93 94 93 93 88 

F-Score 93 93 91 91 87 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

Utilizing ML, we could anticipate the most appropriate compost for the given harvest 

soil n p k qualities assisting the ranchers with expanding the yield. This framework 

does the forecast utilizing five distinct ML models. Decision Tree and Gaussian NB 

have shown similarities in F-Score that is 93% but have shown 93.33% and 93.68% 

respectively in terms of Accuracy. Based on Accuracy and F-score results conclusion 

has been made that Gaussian NB makes the accurate prediction. Also further predicted 

the suitable fertilizer through Gaussian NB model when provided with the parameters 

by the end user. In addition to this work the dataset can be extended by getting more 

values from the analysis of the soil and extend the work for more crops. A user 

interface can be developed so that the farmers can directly get their results from the 

given inputs. Using advanced algorithms in Machine Learning also increase the level 

of accuracy. 
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APPENDIX 

 

 
#importing the libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

 

df=pd.read_csv("C:/Users/S S Manoj/Downloads/Fertilizer Prediction1.csv") 

df.head() 

type(df) 

df.nunique() 

df.shape 

df.isnull().sum() 

df.dtypes 

df.columns,df.dtypes 

df['Fertilizer Name'].value_counts().to_dict() 

data=df.drop(labels="Fertilizer Name",axis=1) 

y=df['Fertilizer Name'] 

df.hist(figsize = (20,20)) 

plt.show() 

corrmat=df.corr() 

fig = plt.figure(figsize = (12,9)) 

sns.heatmap(corrmat, vmax =.8, square=True) 

plt.show() 

corrmat 
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from sklearn import preprocessing 

label_encoder = preprocessing.LabelEncoder()  

df['Fertilizer Name']= label_encoder.fit_transform(df['Fertilizer Name'])  

df['Fertilizer Name'].unique() 

df['Fertilizer Name'].value_counts().to_dict() 

fig_dims = (20, 4) 

fig, ax = plt.subplots(figsize=fig_dims) 

sns.barplot(x='Moisture',data=df,y='Fertilizer Name') 

sns.barplot(x='Temparature',data=df,y='Fertilizer Name') 

fig_dims = (20, 4) 

fig, ax = plt.subplots(figsize=fig_dims) 

sns.barplot(x='Phosphorous',data=df,y='Fertilizer Name') 

 

fig_dims = (20, 4) 

fig, ax = plt.subplots(figsize=fig_dims) 

sns.barplot(x='Nitrogen',data=df,y='Fertilizer Name') 

fig_dims = (20, 4) 

fig, ax = plt.subplots(figsize=fig_dims) 

sns.barplot(x='Phosphorous',data=df,y='Fertilizer Name') 

fig_dims = (20, 4) 

fig, ax = plt.subplots(figsize=fig_dims) 

sns.barplot(x='Potassium',data=df,y='Fertilizer Name') 

data['Crop Type'].value_counts().to_dict() 

from sklearn import preprocessing 

label_encoder = preprocessing.LabelEncoder()  

data['Crop Type']= label_encoder.fit_transform(data['Crop Type'])  

data['Crop Type'].unique() 

data['Crop Type'].value_counts().to_dict() 

data['Soil Type'].value_counts().to_dict() 
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from sklearn import preprocessing 

label_encoder = preprocessing.LabelEncoder()  

data['Soil Type']= label_encoder.fit_transform(data['Soil Type'])  

data['Soil Type'].unique() 

data['Soil Type'].value_counts().to_dict() 

from sklearn.model_selection import train_test_split 

ip=data 

op=df['Fertilizer Name'] 

X_train,X_test,y_train,y_test=train_test_split(ip,op,test_size=0.7,random_state=1) 

X_train 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import classification_report, confusion_matrix 

nb = GaussianNB() 

nb.fit(X_train, y_train) 

n_pred=nb.predict(X_test) 

print('Accuracy of GaussianNB classifier on training set: {:.3f}'.format(nb.score(X_train, 

y_train))) 

print('Accuracy of GaussianNB classifier on test set: {:.3f}'.format(nb.score(X_test, 

y_test))) 

print('Classification Report:') 

print(classification_report(y_test,n_pred)) 

print('\n') 

print('Confusion Matrix:') 

data=confusion_matrix(y_test, n_pred) 

sns.heatmap(data,annot=True,cmap="summer") 

plt.show() 

from sklearn.tree import DecisionTreeClassifier 

dtc = DecisionTreeClassifier().fit(X_train, y_train) 

dtc.fit(X_train, y_train) 
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d_pred = dtc.predict(X_test) 

print('Accuracy of Decision Tree classifier on training set: {:.2f}' 

     .format(dtc.score(X_train, y_train))) 

print('Accuracy of Decision Tree classifier on test set: {:.2f}' 

     .format(dtc.score(X_test, y_test))) 

from sklearn.metrics import classification_report 

k_range = range(1, 10) 

scores=[] 

for k in k_range: 

    clf2 = DecisionTreeClassifier(max_depth = k).fit(X_train, y_train) 

    scores.append(clf2.score(X_train, y_train)) 

print(max(scores)) 

print('Accuracy of Decision Tree classifier on training set: {:.2f}' 

     .format(clf2.score(X_train, y_train))) 

print('Accuracy of Decision Tree classifier on test set: {:.2f}' 

     .format(clf2.score(X_test, y_test))) 

print("Classification Report") 

print(classification_report(y_test,d_pred)) 

print('\n') 

data=confusion_matrix(y_test, d_pred) 

sns.heatmap(data,annot=True,cmap="summer") 

plt.show() 

from sklearn.ensemble import RandomForestClassifier 

classifier = RandomForestClassifier(n_estimators=50,max_depth=10, random_state=1)   

classifier.fit(X_train, y_train)   

from sklearn.metrics import classification_report, accuracy_score 

print('Accuracy of Random Forest classifier on training set: {:.2f}' 

     .format(classifier.score(X_train, y_train))) 

print('Accuracy of Random Forest classifier on test set: {:.2f}' 
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     .format(classifier.score(X_test, y_test))) 

r_pred=classifier.predict(X_test) 

print("Classification Report") 

print(classification_report(y_test,r_pred)) 

print('\n') 

data=confusion_matrix(y_test, r_pred) 

sns.heatmap(data,annot=True,cmap="summer") 

plt.show() 

from sklearn.ensemble import GradientBoostingClassifier 

 

#Create Gradient Boosting Classifier 

gb = GradientBoostingClassifier() 

 

#Train the model using the training sets 

gb.fit(X_train, y_train) 

 

#Predict the response for test dataset 

g_pred = gb.predict(X_test) 

x_pred = gb.predict(X_train) 

from sklearn import metrics 

# Model Accuracy, how often is the classifier correct? 

print("Accuracy of gradient boost:",metrics.accuracy_score(y_test, g_pred)) 

print("Classification Report") 

print(classification_report(y_test,g_pred)) 

print('\n') 

data=confusion_matrix(y_test, g_pred) 

sns.heatmap(data,annot=True,cmap="summer") 

plt.show() 

from sklearn.ensemble import AdaBoostClassifier 
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from sklearn import metrics 

clff = 

AdaBoostClassifier(n_estimators=100,learning_rate=1,random_state=1).fit(X_train, 

y_train) 

print('Accuracy of adaboost classifier on training set: {:.2f}' 

     .format(clff.score(X_train, y_train))) 

print('Accuracy of adaboost classifier on test set: {:.2f}' 

     .format(clff.score(X_test, y_test))) 

a_pred=classifier.predict(X_test) 

print("Classification Report ") 

print(classification_report(y_test,a_pred)) 

print('\n') 

data=confusion_matrix(y_test, a_pred) 

sns.heatmap(data,annot=True,cmap="summer") 

plt.show() 

print("Accuracy scores of each model") 

print("Decision tree     : ",accuracy_score(y_test,d_pred)) 

print("Random forest     : ",accuracy_score(y_test,r_pred)) 

print("GaussianNB        : ",nb.score(X_test, y_test)) 

print("Adaboost          : ",clff.score(X_test, y_test)) 

print("Gradient Boost    : ",accuracy_score(y_test,g_pred)) 

def one(): 

    temperature=int(input('Enter temperature')) 

    humidity=int(input('Enter humidity')) 

    moisture=int(input('Enter moisture')) 

    soiltype=int(input('Enter soil Type  0-black 1-clayey 2-loamy 3-red 4-sandy')) 

    croptype=int(input('Enter Crop Type 0 :Tobacco 1 :Cotton 2 :Ground Nuts 3 :Maize 4 

:millets 5 :oil seeds 6 :pulses 7 :paddy 8 :sugarcane 9 :Barley 10:wheat')) 

    nitrogen=int(input('Enter mitrogen value')) 
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    potassium=int(input('Enter potassium value')) 

    phosphorous=int(input('Enter phosphorous value')) 

    

temp=nb.predict([[temperature,humidity,moisture,soiltype,croptype,nitrogen,potassium,p

hosphorous]]) 

    return temp 

 

def two(): 

    temperature=int(input('Enter temperature')) 

    humidity=int(input('Enter humidity')) 

    moisture=int(input('Enter moisture')) 

    soiltype=int(input('Enter soil Type  0-black 1-clayey 2-loamy 3-red 4-sandy')) 

    croptype=int(input('Enter Crop Type 0 :Tobacco 1 :Cotton 2 :Ground Nuts 3 :Maize 4 

:millets 5 :oil seeds 6 :pulses 7 :paddy 8 :sugarcane 9 :Barley 10:wheat')) 

    nitrogen=int(input('Enter mitrogen value')) 

    potassium=int(input('Enter potassium value')) 

    phosphorous=int(input('Enter phosphorous value')) 

    

temp=dtc.predict([[temperature,humidity,moisture,soiltype,croptype,nitrogen,potassium,p

hosphorous]]) 

    return temp 

     

         

def three(): 

    temperature=int(input('Enter temperature')) 

    humidity=int(input('Enter humidity')) 

    moisture=int(input('Enter moisture')) 

    soiltype=int(input('Enter soil Type  0-black 1-clayey 2-loamy 3-red 4-sandy')) 
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    croptype=int(input('Enter Crop Type 0 :Tobacco 1 :Cotton 2 :Ground Nuts 3 :Maize 4 

:millets 5 :oil seeds 6 :pulses 7 :paddy 8 :sugarcane 9 :Barley 10:wheat')) 

    nitrogen=int(input('Enter mitrogen value')) 

    potassium=int(input('Enter potassium value')) 

    phosphorous=int(input('Enter phosphorous value')) 

    

temp=classifier.predict([[temperature,humidity,moisture,soiltype,croptype,nitrogen,potas

sium,phosphorous]]) 

    return temp 

     

def four(): 

    temperature=int(input('Enter temperature')) 

    humidity=int(input('Enter humidity')) 

    moisture=int(input('Enter moisture')) 

    soiltype=int(input('Enter soil Type  0-black 1-clayey 2-loamy 3-red 4-sandy')) 

    croptype=int(input('Enter Crop Type 0 :Tobacco 1 :Cotton 2 :Ground Nuts 3 :Maize 4 

:millets 5 :oil seeds 6 :pulses 7 :paddy 8 :sugarcane 9 :Barley 10:wheat')) 

    nitrogen=int(input('Enter mitrogen value')) 

    potassium=int(input('Enter potassium value')) 

    phosphorous=int(input('Enter phosphorous value')) 

    

temp=clff.predict([[temperature,humidity,moisture,soiltype,croptype,nitrogen,potassium,

phosphorous]]) 

    return temp 

 

         

def five(): 

    temperature=int(input('Enter temperature')) 

    humidity=int(input('Enter humidity')) 
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    moisture=int(input('Enter moisture')) 

    soiltype=int(input('Enter soil Type  0-black 1-clayey 2-loamy 3-red 4-sandy')) 

    croptype=int(input('Enter Crop Type 0 :Tobacco 1 :Cotton 2 :Ground Nuts 3 :Maize 4 

:millets 5 :oil seeds 6 :pulses 7 :paddy 8 :sugarcane 9 :Barley 10:wheat')) 

    nitrogen=int(input('Enter mitrogen value')) 

    potassium=int(input('Enter potassium value')) 

   phosphorous=int(input('Enter phosphorous value')) 

    

temp=gb.predict([[temperature,humidity,moisture,soiltype,croptype,nitrogen,potassium,p

hosphorous]]) 

    return temp 

 

switcher = { 

        1: one, 

        2: two, 

        3: three, 

        4: four, 

        5: five 

    }  

print("1:Guassian Naive bayes 2:Decision Tree 3:randomForest") 

print("4:Adaboost 5:GradientBoost") 

n=int(input('Enter model')) 

func =switcher.get(n) 

print(func()) 
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	Steps in DT classification are:

